<table>
<thead>
<tr>
<th>KEY PROJECT INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title of Project:</td>
</tr>
<tr>
<td>Brief description of Project:</td>
</tr>
<tr>
<td>Expected Implementation Date:</td>
</tr>
<tr>
<td>Expected duration of Project:</td>
</tr>
<tr>
<td>Project Developer:</td>
</tr>
<tr>
<td>Project Representative:</td>
</tr>
<tr>
<td>Project Participants and any communities involved:</td>
</tr>
<tr>
<td>Version of PDD:</td>
</tr>
<tr>
<td>Date of Version:</td>
</tr>
<tr>
<td>Host Country / Location:</td>
</tr>
<tr>
<td>Certification Pathway (Project Certification/Impact Statements & Products)</td>
</tr>
<tr>
<td>Activity Requirements applied:</td>
</tr>
<tr>
<td>(mark GS4GG if none relevant)</td>
</tr>
<tr>
<td>Methodologies applied:</td>
</tr>
<tr>
<td>Product Requirements applied:</td>
</tr>
<tr>
<td>Regular/Retroactive:</td>
</tr>
<tr>
<td>SDG Impacts:</td>
</tr>
<tr>
<td>Estimated amount of SDG Impact Certified:</td>
</tr>
</tbody>
</table>
SECTION A. Description of project

A.1. Purpose and general description of project

The main purpose of the project activity is to generate electrical energy through sustainable means using solar power resources, the generated green electricity will contribute to climate change mitigation efforts. This project activity is a large scale solar project. Prayatna Developers Pvt. Ltd. is the project investor for this project activity. The project will replace anthropogenic emissions of greenhouse gases (GHG’s) estimated to be approximately 96,489tCO2e per annum, thereon displacing 101,835MWh/year amount of electricity from the generation-mix of power plants connected to the Indian electricity grid, which is mainly dominated by thermal/fossil fuel based power plant.

The project activity is the installation of a new grid-connected renewable power plant/unit and this is not a CPA that has been excluded from a registered CDM PoA as a result of erroneous inclusion of CPAs. The land for the project activity was private land and is purchase in the name of Prayatna Developers Pvt. Ltd.

The details of the project are mentioned in the table:

<table>
<thead>
<tr>
<th>Project Investors’ Name</th>
<th>Prayatna Developers Pvt. Ltd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity in MW</td>
<td>50</td>
</tr>
<tr>
<td>Commissioning Date</td>
<td>07/06/2017</td>
</tr>
<tr>
<td>PPA</td>
<td>18/05/2016</td>
</tr>
<tr>
<td>State</td>
<td>Mahoba, Uttar Pradesh</td>
</tr>
<tr>
<td>Grid</td>
<td>NTPC Ltd.</td>
</tr>
<tr>
<td>Types of Solar PV Modules</td>
<td>Poly-crystalline</td>
</tr>
</tbody>
</table>

Scenario existing prior to the implementation of the project activity

As the project activity is the installation of a new grid-connected renewable power plant/unit. The scenario existing prior to the implementation of project activity is Electricity delivered to the grid by the project activity would have otherwise been generated by the operation of grid-connected power plants and by the addition of new generation sources, as reflected in the combined margin (CM) calculations described in the “Tool to calculate the emission factor for an electricity system” (Version 07).

Baseline Scenario

Baseline scenario and Scenario existing prior to the implementation of the project activity are both same.

Sustainable Development

The National CDM Authority (NCDMA), which is the Designated National Authority (DNA) for the Government of India (GOI) under the Ministry of Environment, Forest and Climate Change (MoEFCC), has mentioned four indicators for the sustainable development in the interim approval guidelines for Clean Development Mechanism (CDM) projects from India. Thus the project’s contribution towards sustainable development has been addressed based on the following sustainable development aspects:

- **Social well being**
 The project activity will provide job opportunity to local people during erection, commissioning and maintenance of the Solar power project. Frequency of visiting to villages and nearby areas by skilled, technical and industrialist has increased due to installation/site visit/operation and maintenance work related to Solar Panels at plant site. This directly and indirectly positively effects the economy of nearby populace.

- **Environmental well being**
Solar power is one of the cleanest renewable energy powers and does not involve any fossil fuel. There are no GHG emissions. The impact on land, water, air and soil is negligible. Thus the project activity contributes to environmental well-being without causing any negative impact on the surrounding environment.

- **Economic well being**
 The project activity generates permanent and temporary employment opportunity within the vicinity of the project. The electricity supply in the nearby area improves which directly and indirectly improves the economy and life style of the area.

- **Technological well being**
 The project activity is step forward in harnessing the untapped solar potential and further diffusion of the Solar technology in the region. The project activity leads to the promotion and demonstrates the success of solar projects in the region which further motivate more investors to invest in Solar power projects. Hence, the project activity leads to technological well-being.

A.2. Eligibility of the project under Gold Standard

The project activity meets the eligibility criteria as per section 3.1.1 of GS4GG Principles & Requirements document as described below.

- The project applies methodology ACM0002, which is an approved methodology under Gold Standard.
- The project type is solar which is an eligible project type as it is in accordance with 1.1.1 a) and 1.1.1b) of the Eligible Project Types & Scope under Renewable Energy Activity Requirements.
- The project activity results in displacement of electricity from thermal power stations while contributing to sustainable development of India. Hence, the project contributes to the Gold Standard Vision and Mission.
- Solar projects are an approved project type and do not require further approval from Gold Standard.
- This project activity is not associated with geo-engineering or energy generated from fossil fuel or nuclear, fossil fuel switch, nor does it enhances or prolongs such energy generation.

General Eligibility Criteria under Renewable Energy Activity Requirements

- **Project Type**: As discussed above, the project type is eligible.
- **Project Location**: The project is located in India.
- **Project scale**: The project activity is a 50 MW solar project and thus qualifies under large scale projects.

A.3. Legal ownership of products generated by the project and legal rights to alter use of resources required to service the project

The project participant has received certificate of incorporation from Ministry of Corporate Affairs (GOI) dated 23/06/2015; also the Power Purchase Agreement between Prayatna Developers Pvt. Ltd. and NTPC Ltd. dated 18/05/2016 demonstrate the PP as the legal owner. Thus the project participant Prayatna Developers Pvt. Ltd.is the legal owner of the project and has the legal rights for the credits that shall be generated by this project activity.

A.4. Location of project

A.4.1. Host Country

India

A.4.2. Region/State/Province etc.

Uttar Pradesh
A.4.3. City/Town/Community etc.
Village : Akathauha
District : Mahoba

A.4.4. Physical/Geographical location

The Project will be located at Akathauha village of Mahoba district, in the Indian state of Uttar Pradesh. The site is well connected by state highway state highway NH-76 to Mahoba. The nearest commercial city remains Jhansi, which is approximately 151 km from the Project site location. Nearest major airport to the site remains Jhansi, 151 km away; while the nearest railway station is at Mahoba, 40 km away from the site. The project coordinates are 25°24'00"N, 79°42'00"E.

A.5. Technologies and/or measures

The project activity aims to harness solar energy through installation of PV with total installed capacity of 50MWac. The solar PV power plant will have solar PV modules, inverters, transformers and other protection system and supporting components.

The solar PV power plant will have solar PV modules, inverters, transformers and other protection system and supporting components. The solar PV modules have a useful life of 25 years.

For monitoring equipment, their location and technical specifications, refer Section B.7.3. For Plant Load Factor (PLF), please refer Section B.6.3.

Baseline Scenario

As the project activity is the installation of a new grid-connected renewable power plant/unit, the baseline scenario is the following as per applied methodology: “Electricity delivered to the grid by the project activity would have otherwise been generated by the operation of grid-connected power plants and by the addition of new generation sources, as reflected in the combined margin (CM) calculations described in the “Tool to calculate the emission factor for an electricity system”.

Hence, pre-project scenario and baseline scenario are the same.

Purpose of the Project
The purpose of the project activity is to generate electrical power using solar energy through operation of Solar Panels, thereby displacing non-renewable fossil resources resulting to sustainable, economic and environmental development. In the absence of the project activity equivalent amount of power generation would have taken place through fossil fuel dominated power generating stations. Thus the renewable energy generation from Prayatna Developers Pvt. Ltd. Project will result in reduction of the greenhouse gas emissions.

The total installed capacity of the project activity is 50 MW. The annual GHG emission reduction through this project activity is 96,489tCO2e.

Positive contribution of the project to the following Sustainable Development Goals:

1. **SDG13: Climate Action**: The project would lead to average reduction of approx. 96,489tCO2 per annum due to implementation of project activity.

2. **SDG 7: Affordable and Clean Energy**: The project is expected to generate average of 101,835 MWh of clean energy per annum.

3. **SDG 8: Decent Work and Economic Growth**: The project provides employment to around 20 persons. The project leads to Trainings & workshops which are conducted for the staff of the project.

A.6. Scale of the project

The renewable energy project activities with a maximum output capacity of 15 megawatts (or an appropriate equivalent) is small scale project activity and the Project activity with more than 15 MW is considered a large-scale CDM project activity.

As the project activity is 50 MW hence clearly it is Large Scale project.

A.7. Funding sources of project

Private funding and funding from bank. The PP hereby confirms that there is no public funding from Annex 1 countries and no diversion of Official Development Assistance (ODA) involved in the project activity.

A.8. Assessment that project complies with ‘gender sensitive’ requirements

Question 1: Does the project reflect the key issues and requirements of Gender Sensitive design and implementation as outlined in the Gender Policy? Explain how.

Response: As per Gold Standard Gender Policy, para 13(i) "Foundational gender-sensitive requirement - This strengthens Gold Standard’s ‘do no harm’ approach and addresses safeguards to prevent or mitigate adverse impacts on women or men and girls and boys. Such action is mandatory for all projects seeking Gold Standard certification and includes compliance with the gender ‘do no harm’ safeguards, gender gap analysis and gender sensitive stakeholder consultations." The project being a renewable energy project is not gender sensitive project. The project does not adversely impact women or men.

Question 2: Does the project align with existing country policies, strategies and best practices? Explain how.

Response: India is party to "Convention on the Elimination of All Forms of Discrimination against Women" and the project has aligned its policies which does not discriminate on gender.

1http://hrlibrary.umn.edu/research/ratification-india.html
Question 3: Does the project address the questions raised in the Gold Standard Safeguarding Principles & Requirements document? Explain how.

Response: The Project shall complete the following gender assessment questions below:

1. *Is there a possibility that the Project might reduce or put at risk women’s access to or control of resources, entitlements and benefits?* No, the Project being a solar project does not reduce access to or control of resources for women.

2. *Is there a possibility that the Project can adversely affect men and women in marginalised or vulnerable communities (e.g., potential increased burden on women or social isolation of men)?* No, the Project beneficiaries in terms of employment and social upliftment of the area are common for both the gender. Further the project has carried out various CSR activities in line with its CSR policy leading to welfare of community at large.

3. *Is there a possibility that the Project might not take into account gender roles and the abilities of women or men to participate in the decisions/designs of the project’s activities (such as lack of time, child care duties, low literacy or educational levels, or societal discrimination)?* No, the CSR activities carried out by the project proponent are discussed with the community consisting both the genders.

4. *Does the Project take into account gender roles and the abilities of women or men to benefit from the Project’s activities (e.g., Does the project criteria ensure that it includes minority groups or landless peoples)?* Yes the project takes into account gender roles and abilities of women/men. Job profile is allocated based on the type of work to be carried out.

5. *Does the Project design contribute to an increase in women’s workload that adds to their care responsibilities or that prevents them from engaging in other activities?* No, on the contrary the project leads to increased availability of electricity in the regional grid thereby uplifting the living standards.

6. *Would the Project potentially reproduce or further deepen discrimination against women based on gender, for instance, regarding their full participation in design and implementation or access to opportunities and benefits?* No, since the project is a renewable electricity generation project, thus it will not have discriminated against women.

7. *Would the Project potentially limit women’s ability to use, develop and protect natural resources, taking into account different roles and priorities of women and men in accessing and managing environmental goods and services?* No, in fact, the project leads to improved electricity in the regional grid thereby leading to less usage of fuel for lighting.

8. *Is there a likelihood that the proposed Project would expose women and girls to further risks or hazards?* No, in fact, due to improved electricity availability the usage of fuel for lighting would be reduced as well as indoor air quality would be improved.

Question 4: Does the project apply the Gold Standard Stakeholder Consultation & Engagement Procedure Requirements? Explain how.

Response: Since the project is applying retroactively for GS registration, a Stakeholder consultation has been carried out accordingly dated 21/09/2016 in village Akathauhof district Mahoba, Uttar Pradesh. The project representative explained how such power projects help in providing clean energy and thereby help in mitigating impacts due to Global Warming and the impacts of solar power projects which lead to providing clean energy, increase in employment opportunities both long term and short term, increased income and thereby leading to improvement in living standard of the people.

www.adanipower.com/docs/download/csrpolicy

https://www.adanigreenenergy.com/csr.html
The queries from the stakeholders and replies by the project representative and the assessment team are described in section E.2. “Summary of comments received”. The stakeholders shared full support for solar power project operations.

SECTION B. Application of selected approved Gold Standard methodology

B.1. Reference of approved methodology

Title: Grid-connected electricity generation from renewable sources.
References: Approved Large Scale Consolidated Methodology: ACM0002 “Grid-connected electricity generation from renewable sources” (Version 19.0, EB 100 Annex 6)\(^3\)

ACM0002 draws upon the following tools which have been used in the PDD:

- Methodological Tool: Tool to calculate the emission factor for an electricity system - Version 07.0
- Methodological Tool: Tool for the demonstration and assessment of additionality - Version 07.0.0, EB 70 Annex 8\(^4\)

B.2. Applicability of methodology

As per para 2 of ACM0002 (Version 19.0, EB 100, Annex 6), “This methodology applies to project activities that include retrofitting, rehabilitation (or refurbishment), replacement or capacity addition of an existing power plant or construction and operation of a Greenfield power plant”. The project activity meets the applicability conditions of the approved consolidated baseline and monitoring methodology ACM0002, Version 19.0, Sectoral Scope 1, EB 100 for Greenfield projects as described below:

<table>
<thead>
<tr>
<th>Applicability</th>
<th>Project activity vis-à-vis applicabilityConditions</th>
</tr>
</thead>
</table>
| This methodology is applicable to grid-connected renewable energy power generation project activities that:
(a) Install a Greenfield power plant;
(b) Involve a capacity addition to (an) existing plant(s);
(c) Involve a retrofit of (an) existing operating plants/units;
(d) Involve a rehabilitation of (an) existing plant(s)/unit(s); or
(e) Involve a replacement of (an) existing plant(s)/unit(s). | The project activity is installation of a new grid connected Solar power plant/ unit at a site where no renewable power plant was operated prior to the implementation of the project activity (Greenfield plant) and hence this criterion is applicable. |

The methodology is applicable under the following conditions:

(a) The project activity may include renewable energy power plant/unit of one of the following types: hydro power plant/unit with or without reservoir, solar power plant/unit, geothermal power plant/unit, solar power plant/unit, wave power plant/unit or tidal power plant/unit;
(b) In the case of capacity additions, retrofits, rehabilitations or replacements (except for solar, solar, wave or tidal power capacity addition projects the existing plant/unit started commercial operation prior to the start of a minimum historical reference period of five years, used for the calculation of baseline emissions and defined in the baseline emission section, and no capacity expansion, retrofit, or rehabilitation of the plant/unit has been undertaken between the start of this minimum historical reference period and the implementation of the project activity. |

The proposed project activity is an installation of a new grid connected solar power plant/unit and hence criteria under point (a) is met.
The project does not involve any capacity additions, retrofits or replacements and therefore this criteria under point (b) is not applicable.

\(^3\)https://cdm.unfccc.int/methodologies/DB/8W400U6E7LFHHYH2C4JR3RJWW04PVN
\(^4\)https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-01-v7.0.0.pdf
In case of hydro power plants, one of the following conditions shall apply:
(a) The project activity is implemented in existing single or multiple reservoirs, with no change in the volume of any of the reservoirs; or
(b) The project activity is implemented in existing single or multiple reservoirs, where the volume of the reservoir(s) is increased and the power density calculated using equation (3), is greater than 4 W/m²; or
(c) The project activity results in new single or multiple reservoirs and the power density, calculated using equation (3), is greater than 4 W/m²; or
(d) The project activity is an integrated hydro power project involving multiple reservoirs, where the power density for any of the reservoirs, calculated using equation (3), is lower than or equal to 4 W/m², all of the following conditions shall apply:
(i) The power density calculated using the total installed capacity of the integrated project, as per equation (4), is greater than 4 W/m²; (ii) Water flow between reservoirs is not used by any other hydropower unit which is not a part of the project activity; (iii) Installed capacity of the power plant(s) with power density lower than or equal to 4 W/m² shall be:
 a. Lower than or equal to 15 MW; and
 b. Less than 10 per cent of the total installed capacity of integrated hydro power project.

The proposed project activity is an installation of a new grid connected solar power plant/ unit and not Hydro power plant, therefore this criteria is not applicable for this project activity.

In the case of integrated hydro power projects, project proponent shall:
• Demonstrate that water flow from upstream power plants/units spill directly to the downstream reservoir and that collectively constitute to the generation capacity of the integrated hydro power project; or
• Provide an analysis of the water balance covering the water fed to power units, with all possible combinations of reservoirs and without the construction of reservoirs. The purpose of water balance is to demonstrate the requirement of specific combination of reservoirs constructed under CDM project activity for the optimization of power output. This demonstration has to be carried out in the specific scenario of water availability in different seasons to optimize the water flow at the inlet of power units. Therefore this water balance will take into account seasonal flows from river, tributaries (if any), and rainfall for minimum five years prior to implementation of CDM project activity.

The proposed project activity is an installation of a new grid connected solar power plant/ unit and not Hydro power plant, therefore this criteria is not applicable for this project activity.

The methodology is not applicable to:
(a) Project activities that involve switching from fossil fuels to renewable energy sources at the site of the project activity, since in this case the baseline may be the continued use of fossil fuels at the site;
(b) Biomass fired power plants/units.

The project activity is installation of a new grid connected solar power project/ unit and does not involve switching from fossil fuel to renewable energy, therefore criterion described in point (a) is not relevant to the project activity. This is a solar power plant/ unit and not a biomass fired plant,
In the case of retrofits, rehabilitations, replacements, or capacity additions, this methodology is only applicable if the most plausible baseline scenario, as a result of the identification of baseline scenario, is “the continuation of the current situation, that is to use the power generation equipment that was already in use prior to the implementation of the project activity and undertaking business as usual maintenance”.

The project activity is a new grid connected solar power plant/unit and not a retrofits, replacement or capacity additions and therefore this criterion is not applicable to the project activity.

Applicability conditions of “Tool to calculate the emission factor for an electricity system”, - Version 07.0

This tool may be applied to estimate the OM, BM and/or CM when calculating baseline emissions for a project activity that substitutes grid electricity that is where a project activity supplies electricity to a grid or a project activity that results in savings of electricity that would have been provided by the grid (e.g. demand-side energy efficiency projects).

This condition is applicable. OM, BM and CM are estimated using the tool under section B.6.3 for calculating baseline emissions.

Under this tool, the emission factor for the project electricity system can be calculated either for grid power plants only or, as an option, can include off-grid power plants. In the latter case, two sub-options under the step 2 of the tool are available to the project participants, i.e. option IIa and option IIb. If option IIa is chosen, the conditions specified in “Appendix 2: Procedures related to off-grid power generation” should power plants (in MW) should be at least 10 per cent of the total capacity of grid power plants in the electricity system; or the total electricity generation by off-grid power plants (in MWh) should be at least 10 per cent of the total electricity generation by grid power plants in the electricity system; and that factors which negatively affect the reliability and stability of the grid are primarily due to constraints in generation and not to other aspects such as transmission capacity.

Since the project activity is grid connected, this condition is applicable and the emission factor has been calculated accordingly.

In case of CDM projects the tool is not applicable if the project electricity system is located partially or totally in an Annex I country.

The project activity is located in India, a non-Annex I country. Therefore, this criterion is not applicable for the project activity.

Under this tool, the value applied to the CO2 emission factor of biofuels is zero.

The project activity is a grid connected solar power project/unit and does not involve emission from biofuels. Therefore, this criterion is not applicable.

B.3. Project boundary

Project boundary has ascertained using para 20 of ACM0002 (Version 19.0, EB EB100, Annex 6) - “The spatial extent of the project boundary includes the project power plant/unit and all power plants/units connected physically to the electricity system that the CDM project power plant is connected to.”

Hence the project boundary includes the Solar Project activity, sub-station, grid and all power plants connected to grid. The proposed project activity will evacuate power to the Indian grid.
B.4. Establishment and description of baseline scenario

As per the approved consolidated Methodology ACM0002 (Version 19.0, EB 100 Annex 6) para 22 "If the project activity is the installation of a Greenfield power plant, the baseline scenario is electricity delivered to the grid by the project activity would have otherwise been generated by the operation of grid-connected power plants and by the addition of new generation sources, as reflected in the combined margin (CM) calculations described in the "Tool to calculate the emission factor for an electricity system".

The project activity involves setting up of solar panels to harness the power generation from Solar source to produce electricity and supply to the grid. In the absence of the project activity, the equivalent amount of power would have been supplied by the Indian grid, which is fed mainly by fossil fuel fired plants.

The combined margin (EF_{grid,CM,y}) is the result of a weighted average of two emission factor pertaining to the electricity system: the operating margin (OM) and build margin (BM), in accordance with the Tool to calculate the emission factor for an electricity system - Version 07 Calculations for this combined margin must be based on data from an official source\(^5\) (where available) and made publically available. In India, Central Electricity Authority (CEA), Government of India provides this data, and accordingly the same has been used.

The combined margin of the Indian grid used for the project activity is as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Nomenclature</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO(_2)</td>
<td>No</td>
<td>Source</td>
</tr>
<tr>
<td>CH(_4)</td>
<td>No</td>
<td>Source</td>
</tr>
<tr>
<td>N(_2)O</td>
<td>No</td>
<td>Source</td>
</tr>
</tbody>
</table>

\(^5\)http://www.cea.nic.in/reports/others/thermal/tpece/cdm_co2/user_guide_ver13.pdf
EFgrid,CM,y	0.9475 tCO2/MWh	Combined margin CO2 emission factor for the project electricity system in year y	Calculated as the weighted average of the operating margin (0.75) & build margin (0.25) values, sourced from Baseline CO2 Emission Database, Version 13 published by Central Electricity Authority (CEA), Government of India in the month of June 2018.
EFgrid,OM,y	0.9726 tCO2/MWh	Operating margin CO2 emission factor for the project electricity system in year y	Calculated as the last 3 year (2014-15, 2015-16, 2016-17) generation-weighted average, sourced from Baseline CO2 Emission Database, Version 13, published by Central Electricity Authority (CEA), Government of India.
EFgrid,BM,y	0.8723 tCO2/MWh	Build margin CO2 emission factor for the project electricity system in year y	Baseline CO2 Emission Database, Version 13, published by Central Electricity Authority (CEA), Government of India.

B.5. Demonstration of additionality
Refer CDM PDD.

B.6. Sustainable Development Goals (SDG) outcomes

B.6.1. Relevant target for each of the three SDGs

<table>
<thead>
<tr>
<th>Item</th>
<th>Goals and Targets</th>
<th>Indicators</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SDG 7: Affordable and Clean Energy</th>
<th>7.2: By 2030, increase substantially the share of renewable energy in the global energy mix</th>
<th>7.2.1: Renewable energy share in the total final energy consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target: 101,835 MWh per annum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SDG 8: Decent Work and Economic Growth</th>
<th>8.5: By 2030, achieve full and productive employment and decent work for all women and men, including for young people and persons with disabilities, and equal pay for work of equal value</th>
<th>8.5.1: Average hourly earnings of female and male employees, by occupation, age and persons with disabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Training: 1 nos annually</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Employment of 20 staff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The income to all the unskilled workers are made on day to day basis with the minimum being Rs. 350 per day. Annual records of income paid to all the employees would be available.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SDG 13: Climate Action</th>
<th>13.2: Integrate climate change measures into national policies, strategies and planning</th>
<th>13.2.1: Number of countries that have communicated establishment or operationalization of an integrated policy/strategy/plan which increases their ability to adapt to the adverse impacts of climate change, and foster climate resilience and low greenhouse gas emissions development in a manner that does not threaten food production (including a national adaptation plan, nationally determined contribution, national communication, biennial update report or other)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target: 96,489 tCO2 per annum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B.6.2. Explanation of methodological choices/approaches for estimating the SDG outcome

The company has a Corporate Social Responsibility Policy\(^6\) in place. In sync with the overall policy, the company conducts regular surveys during construction as well as O&M phases in the villages near project locations to check the requirement of facilities by the villages. Based on the surveys, PP identifies and works on several scope(s) of developmental activities such as health camps, distribution of furniture & sports kits in schools, toilet requirements in government schools, drinking water requirements etc. For this project activity, following SDGs are expected to be impacted:

SDG 7: Affordable and Clean Energy
The baseline for the project is no project, thus leading to generation in the relevant grid which is dominated by fossil fuel. The clean energy generated by the project is calculated based on the amount of electricity generated by the project per annum. The project is expected to generate 101,835 MWh of clean energy per annum.

SDG 8: Decent Work and Economic Growth
The project leads to Trainings & workshops which are conducted for the O&M staff of the project, by their respective companies. Apart from other trainings/workshops that may be organized, the following are also carried out:

\(^6\) http://orangerenewable.net/download/OrangeRenewable-CSR-Policy.pdf
It is expected that a minimum of 1 training (either of the above) would be carried out annually.

The project will also provide employment to approximately 20 persons including O&M staff, management, outsourced jobs as well as security guards during the O&M phase.

SDG13: Climate Action:
The project leads to mitigation of 96,489tCO2 per annum.

As per the approved consolidated Methodology ACM0002 (Version 19.0, EB 100 Annex 6), Emission reductions are calculated as follows:

\[ER_y = BE_y - PE_y \]

Where:
- \(ER_y \) = Emission reductions in year \(y \) (t CO2e/yr)
- \(BE_y \) = Baseline emissions in year \(y \) (t CO2/yr)
- \(PE_y \) = Project emissions in year \(y \) (t CO2e/yr)

Baseline Emissions:
Baseline Emissions for the amount of electricity supplied by project activity, \(BE_y \), is calculated as

\[BE_y = EG_{P,y} \times EF_{grid,CM,y} \]

Where:
- \(BE_y \) = Baseline emissions in year \(y \) (t CO2/yr)
- \(EG_{P,y} \) = Quantity of net electricity generation that is produced and fed into the grid as a result of the implementation of the CDM project activity in year \(y \) (MWh/yr)
- \(EF_{grid,CM,y} \) = Combined margin CO2 emission factor for grid connected power generation in year \(y \) calculated using the latest version of the "Tool to calculate the emission factor for an electricity system" (t CO2/MWh)

Calculation of \(EG_{P,y} \):
The calculation of \(EG_{P,y} \) is different for
a) Greenfield plants,
b) Retrofits and replacements, and
 c) Capacity additions

The project activity is the installation of solar panels and it is a green field project. So the formula in option (a), i.e., greenfieldplants is used to calculate the value of \(EG_{P,y} \). In accordance with para 46 of the applied methodology:

\[EG_{P,y} = EG_{facility,y} \]

Where:
- \(EG_{P,y} \) = Quantity of net electricity generation that is produced and fed into the grid as a result of the implementation of the CDM project activity in year \(y \) (MWh/yr)
- \(EG_{facility,y} \) = Quantity of net electricity generation supplied by the project plant/unit to the grid in year \(y \) (MWh/yr)
The proposed project activity falls under Indian grid, which constitutes of both fossil fuels and non-fossil fuels sources of electricity generation. Emission reductions due to the project activity are considered to be equivalent to the baseline emissions, since the solar project would not lead to any project emission and leakage emissions. Emission reductions are related to the electricity exported by the project and the emission coefficient of the grid system.

Baseline emission factor is calculated as combined margin, consisting of a combination of operating margin and build margin factors according to the procedures prescribed in the latest tool for calculating the emission factor for an electricity system. The steps of calculation are as follows:

Step 1: Identify the relevant electricity systems
As described in tool “For determining the electricity emission factors, identify the relevant project electricity system. Similarly, identify any connected electricity systems”. It also states that “If the DNA of the host country has published a delineation of the project electricity system and connected electricity systems, these delineations should be used”. Keeping this into consideration, the CentralElectricity Authority (CEA), Government of India has divided the Indian Power Sector into five regional grids viz. Northern, Eastern, Western, North-eastern and Southern. However, all the 5 zones have been synchronized and called as Indian Grid.

Step 2: Choose whether to include off-grid power plants in the project electricity system (optional)
Option I is opted for the project activity i.e. only grid connected power plants are included in the calculation.

Step 3: Select a method to determine the operating margin (OM)
According to the tool, the calculation of the operating margin emission factor is based on one of the following methods:
- Simple OM; or
- Simple adjusted OM; or
- Dispatch data analysis OM; or
- Average OM.

Any of the four methods can be used for calculating OM. However, the simple adjusted OM and dispatch data analysis OM cannot be currently applied in India due to lack of necessary data however, the simple OM method (option a) can only be used if low cost/must-run resources constitute less than 50% of total grid generation in:
- average of the five most recent years, or
- based on long-term averages for hydroelectricity production.

The Share of Low Cost / Must-Run (% of Net Generation) in the generation profile of the different grids in India in the last five years is as follows:

<table>
<thead>
<tr>
<th>Share of Must-Run (Hydro/Nuclear) (% of Net Generation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012-13</td>
</tr>
<tr>
<td>India</td>
</tr>
</tbody>
</table>

Source: CO2 Baseline Database for the Indian Power Sector - Central Electricity Authority (CEA)

The above data clearly shows that the percentage of total grid generation by low cost/must run plants (on the basis of average of five most recent years) for the Indian regional grid is less than 50% of the total generation. Hence the Simple OM method can be used to calculate the Operating Margin Emission factor. The average operating margin method cannot be applied, as low cost/ must run resources constitute less than 50% of total grid generation.
The project proponent has chosen an ex ante option for calculation of the OM with a 3-year generation weighted average, based on the most recent data available, without requirement to monitor and recalculate the emissions factor during the crediting period.

Step 4: Calculate the operating margin emission factor according to the selected method

The simple OM emission factor is calculated as the generation-weighted average CO₂ emissions per unit net electricity generation (tCO₂/MWh) of all generating power plants serving the system, not including low-cost / must-run power plants / units. It may be calculated:

- Based on the net electricity generation, and a CO₂ emission factor of each power unit. (Option A),
- or
- Based on the total net electricity generation of all power plants serving the system and the fuel types and total fuel consumption of the project electricity system (option B)

The Central Electricity Authority, Ministry of Power, Government of India has published a database of Carbon Dioxide Emission from the power sector in India based on detailed authenticated information obtained from all operating power stations in the country. This database i.e. The CO₂ Baseline Database provides information about the Combined Margin Emission Factors of the Indian grid. The Combined Margin in the CEA database is calculated ex ante using the guidelines provided by the UNFCCC in the “Tool to calculate the emission factor for an electricity system”. We have, therefore, used the Combined Margin data published in the CEA database, for calculating the Baseline Emission Factor.

The CEA database uses the option A i.e. data on net electricity generation and CO₂ emission factor for each power unit, the average efficiency of each power unit and the fuel type(s) used in each power unit, to calculate the OM of the different regional grids.

\[
EF_{\text{grid,OMsimple,y}} = \frac{\sum (EG_{m,y} \times EF_{EL,m,y})}{\sum EG_{m,y}}
\]

Where:
- \(EF_{\text{grid,OMsimple,y}}\): Simple operating margin CO₂ emission factor in year y (tCO₂/MWh)
- \(EG_{m,y}\): Net quantity of electricity generated and delivered to the grid by power unit m in year y (MWh)
- \(EF_{EL,m,y}\): CO₂ emission factor of power unit m in year y (tCO₂/MWh)
- m: All power units serving the grid in year y except low-cost / must-run power units
- y: The relevant year as per the data vintage chosen in step 3

In India, the Central Electricity Authority (CEA) has estimated the baseline emission factor for the power sector. This data has also been endorsed by the DNA and is the most authentic information available in the public domain.

Following tables shows the simple OM and Net generation respectively for the recent three years:

<table>
<thead>
<tr>
<th>Simple Operating Margin Emission Factors (tCO₂/MWh) (incl. Imports)</th>
<th>2014-15</th>
<th>2015-16</th>
<th>2016-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9903</td>
<td>0.9655</td>
<td>0.9636</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Net Generation in Operating Margin (MWh) (incl. imports)</th>
<th>2014-15</th>
<th>2015-16</th>
<th>2016-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,08,417</td>
<td>8,71,753</td>
<td>9,16,278</td>
<td></td>
</tr>
</tbody>
</table>

7 CO₂ Baseline Database for the Indian Power Sector, Version 13, June 2018
Therefore the 3 years net generation weighted OM average for Indian grid comes out to be 0.9726 tCO2/MWh

The emission factor of each power unit \(m \) has been determined as follows:

\[
EF_{EL,m,y} = \left(\sum FC_{i,m,y} \times NCV_{i,y} \times EF_{CO2,i,y} \right) / EG_{m,y}
\]

Where:
- \(EF_{EL,m,y} \): CO2 emission factor of power unit \(m \) in year \(y \) (tCO2/MWh)
- \(FC_{i,m,y} \): Amount of fossil fuel type \(i \) consumed by power unit \(m \) in year \(y \) (Mass or volume unit)
- \(NCV_{i,y} \): Net calorific value (energy content) of fossil fuel type \(i \) in year \(y \) (GJ / mass or volume unit)
- \(EF_{CO2,i,y} \): CO2 emission factor of fossil fuel type \(i \) in year \(y \) (tCO2/GJ)
- \(EG_{m,y} \): Net quantity of electricity generated and delivered to the grid by power unit \(m \) in year \(y \) (MWh)

\(m \): All power units serving the grid in year \(y \) except low-cost / must-run power units

\(i \): All fossil fuel types combusted in power unit \(m \) in year \(y \)

\(y \): The relevant year as per the data vintage chosen in step 3

Step 5: Calculate the build margin (BM) emission factor

The sample group of power units \(m \) used to calculate the build margin consists of either:

a) The set of five power units that have been built most recently, or

b) The set of power capacity additions in the electricity system that comprise 20% of the system generation (in MWh) and that have been built most recently.

Project participants should use the set of power units that comprises the larger annual generation. Accordingly, the CEA database calculates the build margin as the average emissions intensity of the 20% most recent capacity additions in the grid based on net generation. The build margin emission factor has been calculated ex-ante based on the most recent information available on units already built for sample group \(m \) at the time of PDD submission to the DOE for validation. This option does not require monitoring the emission factor during the crediting period.

The build margin emissions factor is the generation-weighted average emission factor of all power units \(m \) during the most recent year \(y \) for which power generation data is available, calculated as follows:

\[
EF_{grid,BM,y} = \left(\sum EG_{m,y} \times EF_{EL,m,y} \right) / \sum EG_{m,y}
\]

Where:
- \(EF_{grid,BM,y} \): Build margin CO2 emission factor in year \(y \) (tCO2/MWh)
- \(EG_{m,y} \): Net quantity of electricity generated and delivered to the grid by power unit \(m \) in year \(y \) (MWh)
- \(EF_{EL,m,y} \): CO2 emission factor of power unit \(m \) in year \(y \) (tCO2/MWh)
- \(m \): Power units included in the build margin
- \(y \): Most recent historical year for which power generation data is available

The CO2 emission factor of each power unit \(m \) (\(EF_{EL,m,y} \)) is determined as per the procedures given in step 4 (a) for the simple OM, using option A2 for \(y \) most recent historical year for which power generation data is available, and using for \(m \) the power units included in the build margin.

Build margin emission factor is calculated, ex-ante as per the most recent data available. So, build margin emission factor for Indian grid for 2016-2017 is 0.8723 tCO2/MWh

Step 6: Calculate the combined margin (CM) emission factor \(EF_{grid,CM,y} \)
The emission factor EF_{y} of the grid is represented as a combination of the Operating Margin (OM) and the Build Margin (BM). Considering the emission factors for these two margins as $EF_{OM,y}$ and $EF_{BM,y}$, then the EF_{y} is given by:

$$EF_{y} = EF_{grid,OM,y} \times w_{OM} + EF_{grid,BM,y} \times w_{BM}$$

Where:
- $EF_{grid,BM,y}$ = Build margin CO2 emission factor in year y (t CO2/MWh)
- $EF_{grid,OM,y}$ = Operating margin CO2 emission factor in year y (t CO2/MWh)
- w_{OM} = Weighting of operating margin emissions factor (per cent)
- w_{BM} = Weighting of build margin emissions factor (per cent)

According to “Tool to calculate the emission factor for an electricity system” the weights for OM and BM are 0.75 and 0.25 respectively.

Using the values for operating and build margin emission factor provided in the CEA database and their respective weights for calculation of combined margin emission factor, the baseline carbon emission factor (CM) is 0.9475 tCO2e/MWh.

Project Emission

As per the ACM0002 ver-19.0, Project Emission for most renewable energy power generation project activities, $PE_{y} = 0$. However, some project activities may involve project emissions that can be significant. These emissions shall be accounted for as project emissions by using the following equation:

$$PE_{y} = PE_{FF,y} + PE_{GP,y} + PE_{HP,y}$$

Where:
- PE_{y} = Project emissions in year y (tCO2e/yr)
- $PE_{FF,y}$ = Project emissions from fossil fuel consumption in year y (tCO2/yr)
- $PE_{GP,y}$ = Project emissions from the operation of geothermal power plants due to the release of non-condensable gases in year y (tCO2e/yr)
- $PE_{HP,y}$ = Project emissions from water reservoirs of hydro power plants in year y (tCO2e/yr).

The project activity involves the generation of electricity from the installation of solar panels. Hence, as per ACM0002, Version 19.0, there is no project emission for solar projects. Therefore, project emissions are zero.

Leakage Emissions

No leakage emissions are considered in the project activity. The main emissions potentially giving rise to leakage in the context of electric sector projects are emissions arising due to activities such as power plant construction and upstream emissions from fossil fuel use (e.g. extraction, processing, transport). Since the emissions sources are small, it is neglected.

B.6.3. Data and parameters fixed ex ante for monitoring contribution to each of the three SDGs

<table>
<thead>
<tr>
<th>Relevant SDG Indicator</th>
<th>SDG13 : Climate Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data/parameter</td>
<td>$EF_{OM,y}$</td>
</tr>
<tr>
<td>Unit</td>
<td>tCO2e/MWh</td>
</tr>
<tr>
<td>Description</td>
<td>Operating Margin Emission Factor of Indian Grid</td>
</tr>
<tr>
<td>Source of data</td>
<td>Calculated from CEA database, Version 13, June 2018</td>
</tr>
</tbody>
</table>
Build Margin Emission Factor of Indian Grid

<table>
<thead>
<tr>
<th>Value(s) applied</th>
<th>0.9726</th>
</tr>
</thead>
</table>

Choice of data or Measurement methods and procedures
Calculated as per “Tool to calculate the emission factor for an electricity system,” as 3-year generation weighted average using data for the years 2014-2015, 2015-2016 & 2016-17. The data are obtained from “CO2 Baseline Database for Indian Power Sector” version 13.0, published by the Central Electricity Authority, Ministry of Power, Government of India.

Purpose of data
The data is used to calculate baseline emission reductions.

Additional comment
This parameter is fixed ex-ante for the entire crediting period.

Relevant SDG Indicator:
SDG13 : Climate Action

<table>
<thead>
<tr>
<th>Data/parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF<sub>BM,Y</sub></td>
<td>Build Margin Emission Factor of Indian Grid</td>
</tr>
</tbody>
</table>

Unit tCO2e/MWh

Source of data
Calculated from CEA database, Version 13, June 2018

Combined Margin Emission Factor of Indian Grid

<table>
<thead>
<tr>
<th>Value(s) applied</th>
<th>0.8723</th>
</tr>
</thead>
</table>

Choice of data or Measurement methods and procedures
Calculated as per “Tool to calculate the emission factor for an electricity system,”. The data are obtained from “CO2 Baseline Database for Indian Power Sector” version 13.0, published by the Central Electricity Authority, Ministry of Power, Government of India.

Purpose of data
The data is used to calculate baseline emission reductions.

Additional comment
This parameter is fixed ex-ante for the entire crediting period.

Relevant SDG Indicator:
SDG13 : Climate Action

<table>
<thead>
<tr>
<th>Data/parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF<sub>C,M,Y</sub></td>
<td>Combined Margin Emission Factor of Indian Grid</td>
</tr>
</tbody>
</table>

Unit tCO2e/MWh

Source of data
Calculated from CEA database, Version 13, June 2018

Ex ante estimation of outcomes linked to each of the three SDGs

SDG 7: Affordable and Clean Energy - Project expected to generate 101,835 MWh clean energy every year

SDG 8: Decent Work and Economic Growth - Minimum 1 training to be carried out for O&M staff annually. The project will also provide employment to approximately 20 persons.

SDG13 : Climate Action - The project leads to mitigation of 96,489tCO2 per annum.

Calculation of Outcome for SDG13 : Climate Action

Baseline emissions
The baseline emissions are the product of electrical energy baseline \(E_{GP,Y} \) expressed in MWh of electricity produced by the renewable generating unit multiplied by an emission factor.

\[
BE_y = E_{GP,Y} \times EF_{grid,CM,Y}
\]

Where,
- \(E_{GP,Y} \) = Total quantity of net electricity delivered to the Indian grid.
- \(EF_{grid,CM,Y} \) = Combined margin CO2 emission factor for grid connected power generation in year \(y \) = 0.9475t CO2/MWh.

<table>
<thead>
<tr>
<th>Project Participant</th>
<th>Capacity</th>
<th>PLF (%)</th>
<th>Generated Power (MWh/year)</th>
<th>Baseline Emission Factor (tCO2/MWh)</th>
<th>Baseline emissions (tCO2/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prayatna Developers Pvt. Ltd.</td>
<td>50 MW</td>
<td>23.25%</td>
<td>101,835</td>
<td>0.9475</td>
<td>96,489</td>
</tr>
</tbody>
</table>

\[BE_y = 101,835 * 0.9475 \text{t CO2/year} = 96,489 \text{t CO2/year} \]

Project emissions
- \(PE_y = 0 \)

Leakage
- No leakage emissions are applicable.

Emission reductions
- \(ER_y = BE_y - PE_y = 96,489 - 0 = 96,489 \text{t CO2/year} \)

B.6.5. Summary of ex ante estimates of each SDG outcome

SDG 7: Affordable and Clean Energy

<table>
<thead>
<tr>
<th>Year</th>
<th>Baseline estimate (MWh)</th>
<th>Project estimate (MWh)</th>
<th>Net benefit (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>0 MWh</td>
<td>101,835</td>
<td>101,835</td>
</tr>
<tr>
<td>Year 2</td>
<td>0 MWh</td>
<td>101,835</td>
<td>101,835</td>
</tr>
<tr>
<td>Year 3</td>
<td>0 MWh</td>
<td>101,835</td>
<td>101,835</td>
</tr>
<tr>
<td>Year 4</td>
<td>0 MWh</td>
<td>101,835</td>
<td>101,835</td>
</tr>
<tr>
<td>Year 5</td>
<td>0 MWh</td>
<td>101,835</td>
<td>101,835</td>
</tr>
<tr>
<td>Total</td>
<td>0 MWh</td>
<td>509,175</td>
<td>509,175</td>
</tr>
<tr>
<td>Total number of crediting years</td>
<td>5 Years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual average over the crediting period</td>
<td>0 MWh</td>
<td>101,835 MWh</td>
<td>101,835 MWh</td>
</tr>
</tbody>
</table>

The proposed project activity falls under Indian grid, which constitutes of both fossil fuels and non-fossil fuels sources of electricity generation hence in baseline, the affordable and Clean Energy generated was 0. Since the project is solar energy therefore the Affordable and Clean Energy produced by the project is 101,835 MWh per year.

SDG 8: Decent Work and Economic Growth
<table>
<thead>
<tr>
<th>Year</th>
<th>Baseline estimate</th>
<th>Project estimate</th>
<th>Net benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>0 Training, 0 Jobs</td>
<td>1 Training, 20 Jobs</td>
<td>1 Training, 20 Jobs</td>
</tr>
<tr>
<td>Year 2</td>
<td>0 Training, 0 Jobs</td>
<td>1 Training, 20 Jobs</td>
<td>1 Training, 20 Jobs</td>
</tr>
<tr>
<td>Year 3</td>
<td>0 Training, 0 Jobs</td>
<td>1 Training, 20 Jobs</td>
<td>1 Training, 20 Jobs</td>
</tr>
<tr>
<td>Year 4</td>
<td>0 Training, 0 Jobs</td>
<td>1 Training, 20 Jobs</td>
<td>1 Training, 20 Jobs</td>
</tr>
<tr>
<td>Year 5</td>
<td>0 Training, 0 Jobs</td>
<td>1 Training, 20 Jobs</td>
<td>1 Training, 20 Jobs</td>
</tr>
<tr>
<td>Total</td>
<td>0 Training, 0 Jobs</td>
<td>5 Trainings, 20 Jobs</td>
<td>5 Trainings, 20 Jobs</td>
</tr>
</tbody>
</table>

Total number of crediting years 5 Years

Annual average over the crediting period 0 Training, 0 Jobs 1 Training, 20 Jobs 1 Training, 20 Jobs

There was no training in the baseline however the training and jobs generated by the project activity is 1 and 20 jobs.

SDG13 : Climate Action

<table>
<thead>
<tr>
<th>Year</th>
<th>Baseline estimate tCO2</th>
<th>Project estimate tCO2</th>
<th>Net benefit tCO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>96,489 tCO2</td>
<td>0 tCO2</td>
<td>96,489</td>
</tr>
<tr>
<td>Year 2</td>
<td>96,489 tCO2</td>
<td>0 tCO2</td>
<td>96,489</td>
</tr>
<tr>
<td>Year 3</td>
<td>96,489 tCO2</td>
<td>0 tCO2</td>
<td>96,489</td>
</tr>
<tr>
<td>Year 4</td>
<td>96,489 tCO2</td>
<td>0 tCO2</td>
<td>96,489</td>
</tr>
<tr>
<td>Year 5</td>
<td>96,489 tCO2</td>
<td>0 tCO2</td>
<td>96,489</td>
</tr>
<tr>
<td>Total</td>
<td>482,443 tCO2</td>
<td>0 tCO2</td>
<td>482,443</td>
</tr>
</tbody>
</table>

Total number of crediting years 5 Years

Annual average over the crediting period 96,489 tCO2 0 tCO2 96,489

The proposed project activity falls under Indian grid, which constitutes of both fossil fuels and non-fossil fuels sources of electricity generation hence in baseline, the estimated emissions is 96,489 tCO2 per year. Since the project is solar energy therefore the project does not emit any GHG.

B.7. Monitoring plan

B.7.1. Data and parameters to be monitored

<table>
<thead>
<tr>
<th>Relevant SDG Indicator</th>
<th>SDG 7.2.1 : Affordable and Clean Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data / Parameter</td>
<td>EG_{P,y}</td>
</tr>
<tr>
<td>Unit</td>
<td>MWh</td>
</tr>
<tr>
<td>Description</td>
<td>Quantity of net electricity supplied to the grid</td>
</tr>
<tr>
<td>Source of data</td>
<td>Generation statement provided by UPPTCL Jhansievery month.</td>
</tr>
<tr>
<td>Value(s) applied</td>
<td>101,835 MWh</td>
</tr>
</tbody>
</table>
Measurement methods and procedures

- Data Type: Measured
- Monitoring equipment: Energy Meters of accuracy class 0.2s
- Recording Frequency: Continuous monitoring and Monthly recording from Energy Meters, Summarized Annually.
- Archiving Policy: Paper &/or Electronic
- Calibration frequency: Once in 5 years as per CEA guidelines\(^8\)

Electricity exported/imported to the grid is in kWh. However for the calculation purpose electricity exported is converted in MWh. The Net electricity supplied to the grid by the project activity will be calculated as a difference of electricity exported to the grid, electricity imported from the grid obtained from Monthly Meter reading report provided by as per below equation:

\[EG_{PJ,y} = EG_{Export} - EG_{Import} \]

Cross Checking:
Quantity of net electricity supplied to the grid will be cross checked from the Invoices/ Monthly Bill raised by the Project Participant to NTPC Limited.

Monitoring frequency

Monthly

QA/QC procedures

Calibration of all the meters will be undertaken once every year and faulty meters will be duly replaced immediately. The meters will be of accuracy class 0.2s.

Purpose of data

The Data/Parameter is required to calculate the baseline emission

Additional comment

Data will be archived electronically for a period of 2 years beyond the end of crediting period.

<table>
<thead>
<tr>
<th>Relevant SDG Indicator</th>
<th>SDG 8.5.1: Decent Work and Economic Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data / Parameter</td>
<td>Quality of employment</td>
</tr>
<tr>
<td>Unit</td>
<td>Number (employees)</td>
</tr>
<tr>
<td></td>
<td>Number(Trainings)</td>
</tr>
<tr>
<td></td>
<td>INR (salary)</td>
</tr>
<tr>
<td>Description</td>
<td>Number of Trainings provided to employees & O&M staff</td>
</tr>
<tr>
<td></td>
<td>Number of project employees</td>
</tr>
<tr>
<td></td>
<td>Salary given to the employees of the project.</td>
</tr>
<tr>
<td></td>
<td>The income to all the unskilled workers are made on day to day basis with the minimum being Rs. 350 per day. Annual records of income paid to all the employees would be available.</td>
</tr>
<tr>
<td>Source of data</td>
<td>Training Records (HSE & HR) & Employee feedback forms</td>
</tr>
<tr>
<td></td>
<td>Salary Slip of the project employees.</td>
</tr>
</tbody>
</table>

\(^8\)http://www.aegcl.co.in/Metering_Regulations_Of_CEA_17_03_506.pdf, page 12
Some of the trainings & workshops that are given to the respective O&M staffs by PP.

- HSE Training Record
- Regular Drill Record
- Handling of Equipment Training
- Soft Skill Training

The training programmes help in making the workforce efficient and skilled at their job. This not only helps the company but adds to growth of individual employees. Thus, the project has a positive impact on the parameter.

The total number of staff (including O&M staff, management, outsourced jobs as well as security guards) employed by Prayatna Developers Private Limited during O&M phase of the project activity will be 20.

The parameter has a positive impact as the project results in direct employment and income generation.

Measurement methods and procedures

- Training Attendance sheets and records.
- Employment Records
- Salary slip of the employees

Monitoring frequency

Annually

QA/QC procedures

The number of persons employed would be mentioned in the plant register, which can be crossed checked with daily attendance register. Salary slip can be checked for earnings of female and male employees

Purpose of data

Continuation of regular trainings/workshops for employees & O&M staffs

Additional comment

- Relevant SDG Indicator

<table>
<thead>
<tr>
<th>SDG13.2.1 : Climate Action</th>
</tr>
</thead>
</table>

Data / Parameter

Air quality

Unit

tCO2

Description

Reduction in CO2 emission reduction due to implementation of project activity

Source of data

Calculated as per “Tool to calculate the emission factor for an electricity system.”. The data are obtained from “CO2 Baseline Database for Indian Power Sector” version 13.0, published by the Central Electricity Authority, Ministry of Power, Government of India.

Value(s) applied

96,489 tCO2 emission reductions estimated per annum

Measurement methods and procedures

Calculated from CEA database and Energy Generation

Monitoring frequency

Annually

QA/QC procedures

A check meter is also installed near to the export meter to cross check the electricity exported to the grid. The check meter reading would also be used in case of failure of export meter

Purpose of data

Calculation of baseline emissions

Additional comment

- **B.7.2. Sampling plan**

Sampling is not required for the given project activity.
B.7.3. Other elements of monitoring plan

The monitoring plan is developed in accordance with the modalities and procedures for CDM project activities and is proposed for grid-connected solar power project/unit being implemented in Uttar Pradesh, India. The monitoring plan, which will be implemented by the project participant describes about the monitoring organisation, parameters to be monitored, monitoring practices, quality assurance, quality control procedures, data storage and archiving.

The authority and responsibility for monitoring, measurement, reporting and reviewing of the data rests with the project participant.

Responsibilities of Site Incharge (PP): Overall functioning and maintenance of the project activity, the Site incharge shall coordinate with the O&M operator as well as the site supervisors.

Responsibilities of O&M Representative: Co-ordination between Site incharge of the O&M operator as well as the project participant and further report to PP head office.

Responsibilities of Site In-charge (O&M Operator): Responsibility for maintaining the data records, ensures completeness of data, and reliability of data (calibration of equipment) as well as data recording for all the parameters.

Responsibilities of Shift In-charge: Responsibility for day to day data collection and maintains day to day monitored data.

Data Measurement

The export and import energy will be measured continuously using above mentioned Main & Check meters. Export & Import readings of Main & Check meters shall be taken on monthly basis by authorized officer of UPPTCL, Jhansi in the presence of PP or representative of PP. The meter reading will be taken jointly and signed by the representatives of the UPPTCL and project investors. Based on the readings, invoices will be raised by project investors. These invoices can be used for cross checking the meter readings taken for the project activity. It is to be noted though PP or PP representative is available during meter reading, the calculations of net electricity supplied to grid is completely under purview of UPPTCL officer and PP do not have any control on it. Also accuracy class of meters and calibration frequency is under purview of UPPTCL, officer and PP do not have any control on it. PP got the monthly credit report from where net electricity supplied to grid is obtained and used for emission reduction calculations.

It is to be noted that though the PP or their representatives are available during meter reading, the calculations of net electricity supplied to grid is completely under purview of UPPTCL and PP does not have any control on it. Also accuracy class of meters and calibration frequency is under purview of UPPTCL,
Jhansiand PP does not have any control on it. PP gets the monthly credit report from where net electricity supplied to grid is obtained and used for emission reduction calculations.

Data collection and archiving
Export & Import readings from the meters will be collected under the supervision of the authorized representatives of PP. The net electricity supplied to grid would be calculated based on export & import readings. Export and Import data would be recorded and stored in electronic & paper format. The records are checked periodically by the Head (Operations) and discussed thoroughly with the O&M Team. The period of storage of the monitored data will be 2 years after the end of crediting period or till the last issuance of GS CERs for the project activity whichever occurs later.

Mismatch in Monitoring Period and the Billing Period
In case the dates of a particular monitoring period do not match with the dates of the billing period, the net electricity exported to the grid would be calculated from:

\[D = \frac{A}{B} \times C \]

Where,
- \(A \) = Difference of number of days which are not matching of billing period and monitoring period.
- \(B \) = Number of days of the billing period/month which was not matched with the monitoring period.
- \(C \) = Net Electricity supplied to the grid for that given billing period/month.

The calculated value after apportioning would be used for calculation of emission reductions during that period.

Emergency preparedness
The project activity will not result in any unidentified activity that can result in substantial emissions from the project activity. No need for emergency preparedness in data monitoring is visualized.

In the unlikely event of failure of all Main, Check as well as Standby meter installed at Substation, where all the faulty meters are required to be repaired or replaced simultaneously, the export & import readings from Main, Check & Standby Meters installed at the inter-connection point at the project site will be used for monitoring of net electricity exported to the grid.

Personnel training
In order to ensure a proper functioning of the project activity and a proper monitoring of emission reductions, the staff (CDM team) will be trained. The plant helpers will be trained in equipment operation, data recording, reports writing, operation and maintenance and emergency procedures in compliance with the monitoring plan.

SECTION C. Duration and crediting period

C.1. Duration of project

C.1.1. Start date of project
15/10/2016 as per the date of signed earliest contract between Prayatna Developers Pvt. Ltd. and AdaniGlobal FZE (Branch).

C.1.2. Expected operational lifetime of project
25 years

C.2. Crediting period of project
C.2.1. Start date of crediting period
07/06/2017 or two years prior to the date of Project Design Certification, whichever is later.

C.2.2. Total length of crediting period
5 years (Renewable twice).

SECTION D. Safeguarding principles assessment

D.1. Analysis of social, economic and environmental impacts

<table>
<thead>
<tr>
<th>Safeguarding principles</th>
<th>Assessment questions</th>
<th>Assessment of relevance to the project (Yes/potentially/no)</th>
<th>Justification</th>
<th>Mitigation measure (if required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Human Rights</td>
<td>1. The Project Developer and the Project shall respect internationally proclaimed human rights and shall not be complicit in violence or human rights abuses of any kind as defined in the Universal Declaration of Human Rights. 2. The Project shall not discriminate with regards to participation and inclusion.</td>
<td>No</td>
<td>1. During construction and operation of the project the project proponent respected all the human rights. The project is not in any kind of conflict with the livelihood of local people. Project proponent had conducted stakeholder's consultation and sought their opinion. 2. The project will not employ any personnel based on gender, race, religion, sexual orientation or any other basis. As the Constitution of the host country prohibits discrimination on the basis of a person's race, sex, religion, place of birth, or social status. The host country has signed the Convention 100 (equal remuneration) and convention 111 (discrimination in employment /occupation) under the ILO Declaration on Fundamental Principles and rights⁹.</td>
<td>Not Required</td>
</tr>
<tr>
<td>3.2 Gender</td>
<td>The Project shall</td>
<td>No</td>
<td></td>
<td>Not</td>
</tr>
<tr>
<td>Equality and Women’s Rights</td>
<td>Required</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>complete the following gender assessment questions in order to inform Requirements, below:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Is there a possibility that the Project might reduce or put at risk women’s access to or control of resources, entitlements and benefits?</td>
<td>1. The project does not decrease women’s access to or control of resources.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Is there a possibility that the Project can adversely affect men and women in marginalised or vulnerable communities (e.g., potential increased burden on women or social isolation of men)?</td>
<td>2. No, there is no possibility of adverse effect.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Is there a possibility that the Project might not take into account gender roles and the abilities of women or men to participate in the decisions/designs of the project’s activities (such as lack of time, child care duties, low literacy or educational levels, or societal discrimination)?</td>
<td>3. No, the Project does not consider gender roles and in fact actively engages both women and men. Community meetings are scheduled considering participation by both Men and Women.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Does the Project take into account gender roles and the abilities of women or men to benefit from the Project’s activities (e.g., Does the project criteria ensure that it includes minority groups or landless</td>
<td>4. The project does not discriminate on basis of gender, caste or religion.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Does the Project design contribute to an increase in women’s workload that adds to their care responsibilities or that prevents them from engaging in other activities?

6. Would the Project potentially reproduce or further deepen discrimination against women based on gender, for instance, regarding their full participation in design and implementation or access to opportunities and benefits?

7. Would the Project potentially limit women’s ability to use, develop and protect natural resources, taking into account different roles and priorities of women and men in accessing and managing environmental goods and services?

8. Is there a likelihood that the proposed Project would expose women and girls to further risks or hazards?

The Project shall not directly or indirectly lead to/contribute to adverse impacts on gender equality and/or the situation of peoples?

5. No the Project was not designed to increase women’s workload nor add care responsibilities.

6. There is no place for discrimination against women in this Project. The project does not discriminate on basis of gender, caste or religion.

7. The Project will not limit women’s ability regarding natural resources. The project being solar power project thus does not have any major impact on natural resources of the region.

8. No the Project will not expose women and girls to further risks or hazards.

The project proponent has a grievance cell which would look into complaints.
1. Sexual harassment and/or any forms of violence against women - address the multiple risks of gender-based violence, including sexual exploitation or human trafficking.
2. Slavery, imprisonment, physical and mental drudgery, punishment or coercion of women and girls.
3. Restriction of women's rights or access to resources (natural or economic).
4. Recognise women's ownership rights regardless of marital status - adopt project measures where possible to support to women's access to inherit and own land, homes, and other assets or natural resources.

Projects shall apply the principles of nondiscrimination, equal treatment, and equal pay for equal work, specifically:
1. Where appropriate for the implementation of a Project, paid, volunteer work or community contributions will be organised to provide the conditions for

1. There is no such risk for the project. Participation in the project is 100% voluntary. The project proponent has a grievance cell which would look into complaints.
2. The project does not involve in slavery, imprisonment or coercion of women and girls.
3. The Project will not restrict women’s rights or access regarding natural resources. The project proponent does not discriminate on gender, caste, religion etc.
4. Marital status is completely irrelevant to the Project. The project proponent does not discriminate on gender, caste, religion etc.

Yes, the Project has equal opportunity for women and men to contribute both in volunteer and working positions.

1. The project proponent has a stipulated CSR policy, Appointment Policy, Domestic travel policy, Leave Policy and Timekeeping/Attendance Policy that takes into account participation by both men and women. Further, the CSR projects designed are implemented for equal participation of both
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Requirement</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3 Community Health, Safety and Working Conditions</td>
<td>The Project shall avoid community exposure to increased health risks and shall not adversely affect the health of the workers and the community.</td>
<td>No</td>
<td>The project is in compliance with all relevant local and national laws. The Project does not threaten human health or environment and does not adversely affect the health of the workers and the community.</td>
</tr>
<tr>
<td>3.4.1 Sites of Cultural and Historical Heritage</td>
<td>Does the Project Area include sites, structures, or objects with historical, cultural, artistic, traditional or religious values or intangible forms of culture (e.g., knowledge, innovations, or</td>
<td>No</td>
<td>The project does not alter, damage or remove any cultural heritage. As per the list of cultural heritage sites in India by UNESCO, it is clear that the project site is not a cultural heritage site.</td>
</tr>
</tbody>
</table>

10 http://nhrc.nic.in/documents/india_ratification_status.pdf
<table>
<thead>
<tr>
<th>3.4.2 Forced Eviction and Displacement</th>
<th>Does the Project require or cause the physical or economic relocation of peoples (temporary or permanent, full or partial)?</th>
<th>No</th>
<th>The project does not involve and is not complicit in involuntary resettlement of peoples in any way. The Project Developer has also obtained all necessary clearances from nodal agencies and NOCs from all the Gram Panchayats for establishing the project.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.3 Land Tenure and Other Rights</td>
<td>1. Does the Project require any change to land tenure arrangements and/or other rights?</td>
<td>No</td>
<td>1. The project has all the legal, customary rights on the land and does not require any change to land tenure arrangements. The proponent has also obtained necessary clearances from nodal agencies for establishing the plant. 2. This is not applicable as the project does not require any change to land tenure arrangements.</td>
</tr>
<tr>
<td>3.4.4 Indigenous Peoples</td>
<td>Are indigenous peoples present in or within the area of influence of the Project and/or is the Project located on land/territory claimed by indigenous peoples?</td>
<td>No</td>
<td>The project is a solar power project and it is not located on land/territory claimed by any indigenous peoples.</td>
</tr>
<tr>
<td>3.5 Corruption</td>
<td>The Project shall not involve, be complicit in or inadvertently contribute to or reinforce corruption or corrupt Projects.</td>
<td>No</td>
<td>The proponent confirms that there is no corruption involved in the project activity. The host country has strict laws and robust arrangements to prevent such activities.</td>
</tr>
<tr>
<td>3.6.1 Labour Rights</td>
<td>1. The Project Developer shall ensure that there is no forced labour and that all employment is in compliance with</td>
<td>No</td>
<td>1. The proponent assures that there was no bonded or forced labor during construction and operation of the project activity. Uniform policy was implemented for all employees.</td>
</tr>
</tbody>
</table>

12 http://cbi.nic.in/
<table>
<thead>
<tr>
<th>National labour and occupational health and safety laws, with obligations under international law, and consistency with the principles and standards embodied in the International Labour Organization (ILO) fundamental conventions. Where these are contradictory and a breach of one or other cannot be avoided, then guidance shall be sought from Gold Standard.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workers shall be able to establish and join labour organisations.</td>
</tr>
<tr>
<td>Working agreements with all individual workers shall be documented and implemented. These shall at minimum comprise: (a) Working hours (must not exceed 48 hours per week on a regular basis), AND (b) Duties and tasks, AND (c) Remuneration (must include provision for payment of</td>
</tr>
<tr>
<td>The host country has robust laws in place prohibiting forced and compulsory labor(^\text{13}).</td>
</tr>
</tbody>
</table>

2. The proponent confirms that all the fundamental rights of the employees will be respected.

The rights of industrial trade unions and their members have been protected by law in India since 1926 by The Trade Unions Act, 1926\(^\text{14}\). 3. Working agreements with all individual workers are documented and implemented.

13 http://labour.nic.in/content/
14 http://ncw.nic.in/acts/TheTradeUnionsAct1926.pdf
modalities on
health insurance,
AND (e) modalities
on termination of
the contract with
provision for voluntary
resignation by
employee, AND
provision for annual
leave of not less
than 10 days per
year, not including
sick and casual
leave.

4. The Project Developer shall
justify that the employment model
applied is locally and culturally
appropriate.

5. Child labour, as defined by the ILO
Minimum Age Convention is not
allowed. The Project Developer
shall use adequate and verifiable
mechanisms for age verification in
recruitment procedures.

Exceptions are
children for work on
their families’
property as long as:
(a) Their compulsory
schooling
(minimum of 6
schooling years) is
not hindered, AND
(b) The tasks they
perform do not
harm their physical
and mental
development, AND

4. The Project Developer ensures
that local workers/employees
are preferred, to the extent
possible, for employment
during construction as well as
operation phase of the project
ensuring skill development in
the local populace.

5. Child labor is strictly
prohibited in the
country. The proponent
assures that no child labor will
be employed during
construction and operation of
the plant.

The project proponent has a
set mechanism to ensure the
age of all the temporary/
permanent employees during
the life time of the project.

15http://www.indianchild.com/child_labour_law_in_india.htm
<table>
<thead>
<tr>
<th>(c) The opinions and recommendations of an Expert Stakeholder shall be sought and demonstrated as being included in the Project design.</th>
<th>6. The Project Developer shall ensure the use of appropriate equipment, training of workers, documentation and reporting of accidents and incidents, and emergency preparedness and response measures.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. The Project Developer has an active HSE team which ensures that all employees are given appropriate equipment and training. The same is properly documented and appropriate measures taken in case of emergencies.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.6.2 Negative Economic Consequences</th>
<th>3.6.2 Negative Economic Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The Project Developer shall demonstrate the financial sustainability of the Project, also including those that will occur beyond the Project Certification period.</td>
<td>1. Financial Sustainability of the project has been discussed under Section B.5 above. The calculations are for the entire life of the project.</td>
</tr>
<tr>
<td>2. The Projects shall consider economic impacts and demonstrate a consideration of potential risks to the local economy and how these have been taken into account in Project design, implementation, operation and after the Project. Particular focus shall be given to vulnerable and marginalised social groups in targeted communities and that benefits are socially-inclusive</td>
<td>2. There are no negative economic impacts or potential risks to the local economy due to the project activity.</td>
</tr>
<tr>
<td>No</td>
<td>Not Required</td>
</tr>
<tr>
<td>4.1.1 Emissions</td>
<td>Will the Project increase greenhouse gas emissions over the Baseline Scenario?</td>
</tr>
<tr>
<td>4.1.2 Energy Supply</td>
<td>Will the Project use energy from a local grid or power supply (i.e., not connected to a national or regional grid) or fuel resource (such as wood, biomass) that provides for other local users?</td>
</tr>
<tr>
<td>4.2.1 Impact on natural water patterns and flow</td>
<td>Will the Project affect the natural or pre-existing pattern of watercourses, groundwater and/or the watershed(s) such as high seasonal flow variability, flooding potential, lack of aquatic connectivity or water scarcity?</td>
</tr>
<tr>
<td>4.2.2 Erosion and/or water body stability</td>
<td>1. Could the Project directly or indirectly cause additional erosion and/or water body instability or disrupt the natural pattern of erosion? If ‘Yes’ or ‘Potentially’ proceed to question 2. 2. Is the Project's area of influence susceptible to excessive erosion and/or water body instability?</td>
</tr>
<tr>
<td>4.3.1 Landscape modification and soil</td>
<td>Does the Project involve the use of land and soil for production of crops or other products?</td>
</tr>
<tr>
<td>4.3.2 Vulnerability to Natural Disaster</td>
<td>Will the Project be susceptible to or lead to increased vulnerability to solar,</td>
</tr>
<tr>
<td>Section</td>
<td>Question</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Genetic Resources</td>
</tr>
<tr>
<td></td>
<td>4.3.4 Release of pollutants</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Hazardous and Non-hazardous Waste</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Pesticides and fertilizers</td>
</tr>
<tr>
<td>4.3.7</td>
<td>Harvesting of forests</td>
</tr>
<tr>
<td>4.3.8</td>
<td>Food</td>
</tr>
</tbody>
</table>

4.3.9 Animal Husbandry

<table>
<thead>
<tr>
<th>Will the Project involve animal husbandry?</th>
<th>No</th>
<th>The Project will not involve animal husbandry.</th>
<th>Not Required</th>
</tr>
</thead>
</table>

4.3.10 High Conservation Value Areas and Critical Habitats

<table>
<thead>
<tr>
<th>Does the Project physically affect or alter largely intact or High Conservation Value (HCV) ecosystems, critical habitats, landscapes, key biodiversity areas or sites identified?</th>
<th>No</th>
<th>Being Solar project, it does not affect or alter largely intact or HCV ecosystems, critical habitats, landscapes, key biodiversity areas or sites identified.</th>
<th>Not Required</th>
</tr>
</thead>
</table>

4.3.11 Endangered Species

<table>
<thead>
<tr>
<th>1. Are there any endangered species identified as potentially being present within the Project boundary (including those that may route through the area)?</th>
<th>No</th>
<th>1. There are no endangered species identified as potentially being present within the Project boundary.</th>
<th>Not Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Does the Project potentially impact other areas where endangered species may be present through transboundary affects?</td>
<td></td>
<td>2. The Project does not impact other areas where endangered species may be present through transboundary affects.</td>
<td></td>
</tr>
</tbody>
</table>

SECTION E. Local stakeholder consultation

E.1. Solicitation of comments from stakeholders

The Local Stakeholder Meetings were organized for local stakeholder consultation and informed local stakeholder regarding the meeting. The following are the stakeholders for the project activity:

- Local community
- Local village administration
- Technology suppliers
- Local vendors

All the stakeholders have been invited through public notice which were displayed to the nearby areas. Further, stakeholders were invited individually to attend the stakeholders meeting. The meeting was held on 21/09 2016.

In the introductory speech, the representatives of Project Participant welcomed the gathering and given a brief about the project activity. Subsequent to the introductory speech, stakeholders were explained about the electricity generation from solar project is an environmental friendly power generation technology contributing to reduction in GHG emissions. They were also explained about the benefits of the solar power projects like, increasing energy availability and improving quality of power and its assistance to the local population by providing employment opportunities to both skilled & unskilled labours.
E.2. Summary of comments received

The representative of project participant explained about the power generation process from this proposed solar power Plant and emphasised on the positive impacts that this project would leave on the local community via:

- This would create employment opportunity for a large number of people during construction period and continued employment opportunities for the local skill set over the project life time.
- This would improvise the standard of living of the local community.
- In addition as this project would utilise available solar resource to generate power and there would be no associated emissions which would help in maintaining the environment clean.

The villagers raised various queries and clarification provided is as summarised below:

<table>
<thead>
<tr>
<th>Name of the stakeholder:</th>
<th>Bhagwan Bhai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment:</td>
<td>Will coal/wood be used to generate electricity on-site?</td>
</tr>
<tr>
<td>Response:</td>
<td>The project activity does not uses any fuel, instead it uses potential of Solar Power to generate Electricity with the help of Solar Panels and there is no installation of boilers on-site, Solar Panels are used to generate electricity.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of the stakeholder:</th>
<th>Rasul Khan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concerns:</td>
<td>Does the project activity harm air, land and soil quality, water body and agriculture scenario of the area?</td>
</tr>
<tr>
<td>Reply from PP/ PP Representative:</td>
<td>The project activity does not have any negative impact on local climate conditions like air, land and soil quality, rain and agriculture scenario of the area, as already told motive of this project activity is to reduce future anthropogenic emission caused by conventional power generating unit like thermal power plants. The project activity will result in improvement in climate conditions, improve quality of air, land, water, and agriculture scenario.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of the stakeholder:</th>
<th>Md. Riyaaz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concerns:</td>
<td>3. Can the villagers or the neighborhood areas take electricity direct or free of cost?</td>
</tr>
<tr>
<td>Reply from PP/ PP Representative:</td>
<td>Project proponents informed him that as the project exports the electricity to local substation first, there is clear possibility that the local electricity supply situation will be better and local populace will get benefited as a result of it. However, they have also mentioned the preference of supply of electricity is not under the control of project. Since, the electricity is generated in the region, we sincerely hope that the local requirements of electricity are given due consideration by the discom.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of the stakeholder:</th>
<th>Vimal Rao</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concerns:</td>
<td>4. Does the project provide employment opportunities to local populace?</td>
</tr>
<tr>
<td>Reply from PP/ PP Representative:</td>
<td>They were informed that except technical staff, preference will be given to local population in employment, who have desired skills and qualifications. Possibility of imparting training to the educated unemployed youth will also be considered. In addition with the employment opportunities to the local populace, with increase in visit of outside people there will be social and economical wellbeing, Also Due to project activity there will be enhancement in Trade scenario of the area, social and cultural scenario of the area.</td>
</tr>
</tbody>
</table>
E.3. Report on consideration of comments received

There were no negative comments raised by the stakeholders and they were totally in support for setting up of these kinds of projects in the region.
Appendix 1. Contact information of project participants

<table>
<thead>
<tr>
<th>Organization name</th>
<th>Prayatna Developers Pvt. Ltd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration number with relevant authority</td>
<td>U70101GJ2015PTCo83634</td>
</tr>
<tr>
<td>Street/P.O. Box</td>
<td>Judges Bunglow Road, Bodakdev</td>
</tr>
<tr>
<td>Building</td>
<td>Sambhav Press Building</td>
</tr>
<tr>
<td>City</td>
<td>Ahmedabad</td>
</tr>
<tr>
<td>State/Region</td>
<td>Gujarat</td>
</tr>
<tr>
<td>Postcode</td>
<td>380001</td>
</tr>
<tr>
<td>Country</td>
<td>India</td>
</tr>
<tr>
<td>Telephone</td>
<td>+91 79 2555 7429</td>
</tr>
<tr>
<td>Fax</td>
<td></td>
</tr>
<tr>
<td>E-mail</td>
<td>cs@adani.com</td>
</tr>
<tr>
<td>Website</td>
<td>http://www.adani.com/</td>
</tr>
<tr>
<td>Contact person</td>
<td>D Trivedi</td>
</tr>
<tr>
<td>Title</td>
<td>Sr. Manager - Business Development</td>
</tr>
<tr>
<td>Salutation</td>
<td>Mr.</td>
</tr>
<tr>
<td>Last name</td>
<td></td>
</tr>
<tr>
<td>Middle name</td>
<td></td>
</tr>
<tr>
<td>First name</td>
<td></td>
</tr>
<tr>
<td>Department</td>
<td>Solar</td>
</tr>
<tr>
<td>Mobile</td>
<td>+91 79 2555 7429</td>
</tr>
<tr>
<td>Direct fax</td>
<td></td>
</tr>
<tr>
<td>Direct tel.</td>
<td></td>
</tr>
<tr>
<td>Personal e-mail</td>
<td>cs@adani.com</td>
</tr>
</tbody>
</table>

Appendix 2. Summary of post registration design changes

Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>24 August 2017</td>
<td>Updated to include section A.8 on ‘gender sensitive’ requirements</td>
</tr>
<tr>
<td>1</td>
<td>10 July 2017</td>
<td>Initial adoption</td>
</tr>
</tbody>
</table>